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Final Report:

SYNTHETIC APERTURE RADAR SIGNAL PROCESSING AND IMAGING
UsiNnGg HiGH PERFORMANCE COMPUTING

Mehrdad Soumekh
Department of Electrical Engineering
State University of New York at Buffalo
Ambherst, New York 14260

This document describes the progress on the work performed for “Synthetic Aperture
Radar Signal Processing and Imaging Using High Performance Computing,” under the
DURIP Contract F49620-99-1-0140 for the Air Force Office of Scientific Research, for the

period ending on 9/30/2000.

The grant was provided by AFOSR to establish a SAR High Performance Laboratory.
With this support, the following items were purchased for the SAR HPC laboratory:

1. 16 Origin-2000 300 MHz Processors
8 GBytes of RAM
108 GBytes of Fiber Channel Hard Drive

OCTANE Workstation with a 300 MHz RS-12000 Processor, and Enhanced SSE
Graphics

o

Ll

During the past two summers, the PI also collaborated with the members ~. the A%
Force’s Rome Laboratory (Contact: Mark Linderman) and Wright Patterson Laboratisy
(Steve Worrell, Ed Zelnio and Mike Bryant) on various implementation aspects of SAR sig-
nal and image processing algorithms on Shared Memory Processors (SMP) and Distributed
Memory (DM) HPCs. '

During the first part of the summer of 1999, the PI worked with the group at the
Rome Lab. to work on the parallel implementation of his SAR imaging algorithms on
HPCs. A subaperture digital spotlight SAR imaging method was developed that was
suitable for implementation in both SMP and DM HPCs. The algorithm was tested using
a wide-bandwidth and wide-beamwidth FOPEN SAR (P-3) database.

During the second part of the summer of 1999 and summer of 2000, the PI worked
with the group at the Wright Pattern Lab. to implement his high-resolution SAR imaging
(wavefront reconstruction) algorithms on realistic X band spotlight SAR databases. The
subaperture digital spotlight SAR imaging method was successfully implemented for an
operational wide angle spotlight SAR system.

The results of these collaborations are documented in the attached three papers.

2




Digitally-Spotlighted Subaperture SAR Image Formation Using
High Performance Computing

- Mehrdad Soumekh and Gernot Giunther
Department of Electrical Engineering, 201 Bell Hall
State University of New York at Buffalo
Ambherst, New York 14260
Email: msoum@e_:ng.buﬁ'alo.edu

Mark Linderman and Ralph Kohler
United States Air Force Research Laboratory
Radar Signal Processing Branch
Rome, NY 13441

ABSTRACT

This paper is concerned with the implementation of the SAR wavefront reconstruction algorithm on
a high performance computer. For this purpose, the imaging algorithm is reformulated as a coherent »
processing (spectral combination) of images that are formed from a set of subapertures of the available
synthetic aperture. This is achieved in conjunction with extracting the signature of a specific target region
(digital spotlighting). Issues that are associated with implementing the algorithm on SMP-HPCs and
DMP-HPCs are discussed. The results using the FOPEN P-3 SAR data are provided.

Keywords: Synthetc Aperture Radar. High Performance Computing

1. INTRODUCTION

This paper presents a practical method for implementing the high-resolution stripmap/spotlight
SAR imaging algorithm, known as the SAR wavefront (or omega-k) reconstruction method, on a Dis-
tributed Memory (DM) High Performance Computer (HPC). The SAR wavefront imaging method is an
approximation-free algorithm that provides high-resolution and accurate coherent target information that
is usciu) for advanced SAR information post-processing, €.g.. automatic target recognition. However, the
higiuy-accurate information base of the wavefront reconstruction algorithm is formed via the Fourier (FFT)
processing of relatively large databases. For real-time processing in an operational SAR system, this re-
quirement puts restrictions on the minimum size of the Random Access Memory (RAM) of the computer
used for the SAR wavefront image formation.

Meanwhile, due to the limited area and cooling restrictions on a radar-carrying aircraft, the DM-HPCs
are the practical choice for on board processing of SAR data. Unfortunately, in a DM-HPC, unlike a shared
memory HPC, the RAM associated with each processor cannot be addressed by the other processors. In
this case, the RAM available to each DM processor (currently around 64 to 128 MBytes) is not sufficient
for, e.g, processing some of the recently-acquired high-resolution X band or UHF band (FOPEN) SAR
data via the wavefront reconstruction algorithm. A practical solution for the above-mentioned problem
is to form lower-resolution images of subpatches of the target area from subsets of the synthetic aperture
or synthetic subapertures; this reduces the sizes of the data that are processed and the FFTs used for the
wavefront reconstruction. Moreover. the sizes of the subpatch and subapertures can be determined a priori

The work of Mehrdad Soumekh was supported by the Office of Naval Research under grants N00014-
96-1-0586 and N00014-97-1-0966, and the Air Force Office Of Scientific Research under grants F49620-99-
1-0140 and F49620-93-C-0063.




by the user based on the available RAM. Provided that the subaperture imaging algorithm preserves the
coherent information among the lower-resolution images. the user could coherently add the lower-resolution
images to form the desired high-resolution SAR image.

The challenge for this processing is i) to extract the SAR signature of a given subpatch from the
measured SAR data, a process that we refer to as digital-spotlighting; and ii) appropriate digital signal
processing of subaperture SAR data that yields "calibrated” lower-resolution SAR images that can be
combined coherently. In this presentation. we address these issues via exploiting spectral (Doppler) prop-
erties of the SAR signal .hat is tased on Gabor’s wavefront reconstruction theory. In Section 2, we outline
subaperture digital spotlighting and reconstruction for stripmap/spotlight SAR systems. In Section 3,
we show how the lower-resolution SAR images that are formed with subaperture data could be coherently
combined to form the full-resolution image. This discussion also shows that subaperture processing is more
advantageous in terms of the size of the arrays that are processed than the full-aperture processing: results
using a realistic stripmap SAR database (P-3 data) will be provided. Finally, we examine issues that are
associated with the implementation of the imaging algorithm on a high performance computer in Section
4, and present the results of a study that we performed with an HPC.

2. Subaperture Digital Spotlighting
We consider the problem of imaging a specific target area in the two-dimensional spatial domain of
range z and cross-range y from a subset of a synthetic aperture (subaperture) within which the target area
is observable to the radar; the synthetic aperture could be a portion of a full aperture of a spotlight SAR
system, or a subset of the beamwidth ‘(subaperture) in a stripmap SAR system that contains the desired
target area. '

Suppose the length of the subaperture is 2L; that is. u € [-L, L}, where u is the synthetic aperture
domain. Let the coordinates of the center point of the target area with respect to the center point of the
subaperture (that is, u = 0) be (X, Y:). The user is interested in imaging an area in the spatial domain
that is specified via -

z €[Xc— Xo,Xc+ Xo] and yE€ [Y. - Yo,Yc + Yo),

with respect to the c~uter of “ne subaperture, that is, v = 0. Our task is to develop a multi-dimensional
digital signal processiag method to eztract the SAR signature of the above-mentioned target area from the
spotlight/stripmap measurements, a process that we refer to as digital spotlighting.

Let s(w.u) be the measured SAR signal in the fast-time frequency w domain and the synthetic aperture
u domain. To formulate the digital spotlighting concept. consider the target function which is formed via
narrow-bandwidth and narrow-beamwidth polar format processing at near broadside [S99, Section 4.11);
that is,

F(kn ky) = Sc(“’vu)a
where
cos? 8.
R.

u.

k. =2k cosf, and ky = 2k.sinf. — 2k
In the above, R, = /X2 + Y2 and 6. = arctan (%’k)’ and

se(w,u) = s(w,u) exp [ﬁg — (Y. —u)?],

is the slow-time compressed SAR signal. In this case. the target function f(z,y) is simply the two-
dimensional Fourier transform of the slow-time compressed signal, that is, the slow-time compressed SAR
signal in the (1, ky) domain.




In [S99, Section 4.11), it is pointed out that a more accurate analysis of the SAR image which is
formed via polar format processing would indicate that the signature of the n-th target. that is located at
the spatial rectilinear coordinates (Zn,yn) Or the the polar spatial coordinates [,(0), 7n), appears at

2T, .
i, = — and  kun = 2k sin [0,,(0) - Oc]
in the polar format processed SAR image, that is, the two-dimensional Fourier transform F(. v) [ se(w. u) ] A
which we refer to as the polar format processel reconitruction. (The Fourier transform with respect to

the variable w is an inverse one.)

Note that the above transformation from (Tn,0n) to (tn,kun) can be translated into the following
rectilinear coordinates in the spatial domain:

tn .
Tp= f—;—'i cos(¢n + 6c) and yn = 2—2—' sin(¢n + 6c)

where ¢, = arcsin (!‘2—';‘?) Thus, for digital spotlighting the desired target area, that is, 7 € [X.— Xo-Xc+
Xo)l and y € Y, - Yo, Y + Yo], the polar format progcessed image in the (t,k,) domain should be passed
through a two-dimensional filter in the (t, k.) domain with the following passband:

N t
|féf cos( + 6c) — Xl < Xo and (L sin(6 +09 - Yol < Yo

where ¢ = arcsin (2—“,‘;) is the angular slow-time Doppler domain at the carrier frequency [599. Chapter 2].

We should point out that this definition of the angular slow-time Doppler ¢ domain is suitable for the
narrow-bandwidth SAR systems. One could improve the results of digital spotlight filtering by converting
the SAR signal Sc(w,ky) into the (w,¢) domain where ¢ = arcsin (%’,:) is the angular slow-time Doppler
domain which varies with the fast-time frequency. For this purpose, at a fixed w or k, one must interpolate
Sfw,k,) from the k, domain to the ¢ domain. Then, this database is converted into the ( t.o) domain
via an inverse Fourier transform with respect to w. The digital spotlight window is then applied to this
(t,¢) domain database. The digital-spotlighted data are then brought back to the (w.®) domain via 2
forward Fourier transform with respect to t. The resaltant (w, ) domain data are interpolated to recover
the (w, k) domain data via the wide-bandwidth mapping ¢ = arcsin (5¢), or ku = 2k sin ¢.

Thus. for the wide-bandwidth SAR systems, one needs to implement one-dimensional interpolation
from the k, domain to the ¢ domain, and then back from the ¢ domain to the k, domain. It turns out
that using the narrow-bandwidth assumption, that is, ¢ = arcsin ({t), for digital spotlighting results in
slight degradations near the edges of the reconstructed SAR image; these are negligible effects especially
when the purpose is to image 2 large target area. (One may reduce and/or completely remove these
degradations by using a larger digital spotlight filter.) In the discussion and the results which follow, we
use the narrow-bandwidth assumption for digital spotlighting.

The procedure for digital spotlighting can be summarized as follows. The reference SAR signal is

defined via :

so(u,w) = exp [-j2k VXE+(Ye— u)? + j2k R.);
the addition of the phase term 2k R, to the reference signal ensures that the reference fast-time point T¢
is unchanged. The digital spotlight filter in the (t, k) domain is defined via

Wt k) = 1, for |SGtcos(d+6c) — X.| < Xo and | sin(¢ 4 8.) — Y| < Yo
st 0, otherwise.




Polar format processed reconstruction with the digital spotlight filter is
fults ko) = Walts Ba) Frua | s |-
Then, the digital-spotlighted slow-time compressed SAR signal in the (w, ky) domain is obtained by

Sealr k) = Fio | falti k) |-

At this point, if the user wishes to upsample the SAR data in the syntheuc aperture u domain (that
is, sample spacing conversion from A, to Ay), an appropriate number of 7c.Ss should be added to the
samples of Sca(w, k) in the slow-time Doppler k, domain [S99, Chapter 2]. After the optional zero-padding
in the k, domain, the digital-spotlighted slow-time compressed signal in the (w, u) domain is formed via

sealw,u) = Fg) [ Sea(ws k) ]

Finally, the digital-spotlighted SAR signal in the (w,u) domain is constructed from the following slow-time
decompression (mixing with the reference SAR signal): sg(w,u) = Sea(w, u) so(u,w).

In this paper, we examine the processing of UHF-band P-3 (FOPEN) SAR data. Figure la shows
the reconstructed target spectrum for 2,048 slow-time samples of P-3 data for a 300 m (in range) and 600
m (in cross-range), that is, (Xo,Yo) = (150, 300) m, which is located at (X,,Ye) = (5857. —2048) m: the
spatial domain image formed by this spectrum is shown in Figure 1b. Note that the individual “dots”
(two-dimensional sinusoids) in the reconstructed target spectrum of Figure 1a; these are the signatures of
RFI’s (mainly audio and video channels of various television stations). We used a process 10 convert the
deramped P-3 datainto echoed data [$99]. This approach makes the RFI signatures to appear as individual
dots that are easier to suppress. (In the spatial reconstruction of Figure 1b, the RFT signatures are not
suppressed to exhibit the sinusoidal behavior of them.) We also obtain the lower-resolution reconstructions
of the target area for the subapertures with squint cross-range values of Y, = -1228.8 m, -409.6 m, 409.6 m,
1228.8 m. and 2048 m (each subaperture has 2,048 slow-time samples); these are not shown in this paper.

3. Coherent Subaperture Digital Spotﬁgh‘»mé ‘

The reconstructed target function in Figure 1b is formed via processing a subset of the aspect angle
(slow-time) domain data over which the target area is observable to the radar. Since the wavefront
reconstruction is not based on any approximations (on the relative size and/or coordinates of the target
area with respect to each individual subaperture), one can combine these lower-resolution images (and
their three positive squint angle counterparts) to obtain the full-resolution SAR image of the target area.

For this purpose, one could combine the target area’s spectral signature that appears in Figure la and
its five other counterparts (i.e., six spectral bands formed by six different subapertures), and then perform
an inverse two-dimensional Fourier transform to form the full-resolution spatial domain SAR image. Figure
2 shows the combined spectral distribution of the target area from its six subaperture spectra.

Note that the slow-time Doppler bands (that is, the k, domain coverage) for the subaperture recon-
structions (e.g., Figure 1a) are smaller than the full-aperture reconstruction Doppler band in Figure 2. In
fact, the sizes of the processed measurement arrays and the FFTs that are used to form the lower resolution
subaperture images are significantly smaller than the ones used for the full-aperture reconstruction. To
show this, we consider the Nyquist sampling rate for the slow-time domain which is the smallest of {S99]

. i i . q-1
A, < . Amin and A, < [ 2510 Omax 3 2 sin Omin ] ,
2 (Sm emax - emin)

Amin /\max




where Amin and Amax are, respectively, the smallest and largest wavelengths in the radar signal. and

Y.-L-Y YC+L+Y0)
X, Xec

Omin = arctan ( ) and Oqax = arctag;(
are the smallest and largest aspect angles of the target area (a positive Y, is assumed. and some simplifi-
cations are used to relax our notation; for the complete story, see [S99}).

In the case of the P-3 data, there are 12,288 (six times 2,048 samples) slow-time samples spaced
at A, = .4 m. Thus, to form the full-resolution SAR image by processing the entire 12,288 slow-time
samples, the slow-time Nyquist criterion becomes A, < .22 m; that is, the slow-time domain d:.a shouid
be upsimpled to over 22,000 samples (see the discussion on PRF upsampling via the slow-time compression-
in [S99]). However, for the subaperture reconstruction, the slow-time Nyquist criterion is A, < .92 m for
Y. = £409.6 m; A, < .66 m for Y. = £1228.8 m; and A, < .52 m for Y. = £2048 m; In this case, there is
no need to upsample in the slow-time domain. Iin fact, in our processing, we reduce the sampling rate in
the slow-time domain (depending on the value of Y.) since the measured P-3 data is with A, = .4 m.

4. Implementation on a High Performance Computer

We have developed the subaperture digital-spotlighting and coherent imaging algorithm using a Mat-
lab code. This code has been successfully being used to process the following five different SAR/ISAR
databases: - :

i. NRaD's X-band ISAR data
ii. SRI's UHF-band (FOPEN) SAR data
iii. NAVAIR/ERIM's UHF-band (P-3 FOPEN) SAR data
iv. ERIM’s X-band DDB SAR data ‘
v. ERIM’s Ultra-SAR data

This Matlab code has been converted to an efficient C code that is suitable for implementation on
an HPC. The following is a summary of the outcomes and observations in using this C code tc process
P-3 data on a 16-processor 8-GBytes-RAM SGI SMP-HPC. To improve the performance of th. code f.om 3
the computational cost point of view, we first considered its sequential optimization; we thes studicy its
parallel implementation. These are described next.

A. Sequential Optimizations

Fourier Transforms: Processing SAR data requires numerous one-dimensional and two-dimensional
Fourier transforms. Thus, it was important to utilize a fast Fourier transform code in C. A great deal of
research has been done on this subject. We chose to use the fftw library [Fri]. This library determines
the optimal decomposition of a Fourier transform on the system in use by performing a number of sample
Fourier transforms, and is easily parallelizable. However, fitw does not automatically choose the fastest
way of implementing a transform: The user still has to test whether it is more efficient to implement a
non-contiguous transform or a transposition and a contiguous transform, and how many threads to use for
a parallel FFT. These choices depend greatly on the size of the data used and will also differ from system to
- system. There are some general rules to follow, but no automated functions that will aid in these choices.
Also, this library does not implement an integrated FFT-shift operation, so from case to case, decisions
had to be made on how best to integrate or avoid this operation. The array sizes of the SAR data were
adjusted to allow particularly fast Fourier transforms where possible. ‘




Combining Operations: The main focus in the process of sequential optimization lies in the simplifi-
cation of the computation and in reduction of redundancy. A clear indication that a code is not optimized
yet is when the program spends a lot of its time merely copying data, Very often, this can be completely
avoided by forcing in-place calculations. Operations that inherently involve copying, like FFT-shift or
zero-padding, can sometimes be combined with each other and with other calculations and thereby reduce
the copying significantly. Another good example of a reducible operation is performing several phase shifts
in one step, e.g., chirp signal calibration and motion compensation. This will significantly improve the
speed of the code and is trivial from a mathematical point of view. Unfortunately, it also reduces the
- 2adability of the code because operations are combined that are considered separate from a radar imaging
point of view. In a code that is optimized in this way, it may be rather difficult to track the different parts
of each processing step as they may be integrated into different modules.

B. Parallel implementation

Two very different ways of parallelization have to be considered: Parallelism can occur at the lowest
level, e.g., by using a parallel Fourier transform, or at the highest level by running the optimized sequential
algorithm in parallel for different subapertures or targets areas. Both of these concepts have advantages
and disadvantages. Running several independent sequential algorithms in parallel is very straightforward,
easily implemented with a script, and keeps all available processors busy. However, the resources are not
optimally used: No use is made of the SMP architecture because each process works on its own .memory.
A small part of the computation performed by the sequential processes is redundant and could be avoided
if the processes shared their results. No single process can use the large amount of RAM available in a
SMP-HPC, each of the p processes can only use an average of 1/p of the RAM.

Low level parallelism on the other hand requires a great amount of programming because every single
part of the program has to be separately converted from sequential to parallel execution. The resulting
parallel program using p processors will not be p times faster than the sequential algorithm: Creating and
synchronizing threads involves a significant overhead, and not all parts of the program lend themselves
equally well to parallelization. Also, the optimal sequential algorithm may not be the best algorithm to
parallelize. Other problems that turn up are specific to the target architecture: A single processor working
on datu in its cache may finish its calculation faster than several processors working on the same data
and rmutually invalidating their cache entries. Because of these difficulties in low-level parallelization, we
decided to primarily use high level parallelization of a single threaded process for imaging of large target
areas at high resolution. However, for imaging a specific target area from a specific point of view, low-level
parallelization is preferable.

C. Evaluation

As described in Section 3, it is possible to generate full resolution images from lower resolution images
derived from subaperture processing. We therefore have to examine two parts of the process: Generating
the subaperture spectral images and combining these images to a full resolution spatial image. The
parameters of our problem are the target (sub-)area size and the size of the subapertures. The target
area’s dimensions in range and cross-range are 2X, and 2Y,. The given P3 database supports values for
Xo up to 350m. It contains 24 nodes with 312 slow-time samples each. We measured the CPU time and
memory requirements of the sequential algorithm for different target area sizes of a broadside target and
different numbers of nodes in the subapertures. Our values for Xy were 50, 100, 200, 300, and 350 meters.
Our values for Yy were 100, 200, 300, 450. and 600 meters. We used subapertures containing 1, 2, 3, 4,
and 6 nodes.




Figures 3a-3b show the CPU time per target area used to image that area. Figure 3a shows the
results for subaperture imaging: It clearly shows that the timing efficiency increases with target area
size. Figure 3b shows the result for combining the spectral images: In general, slightly better timing
results are achieved for smaller target area sizes because of the 2D Fourier Transform converting the added
spectral images to the spatial domain. This slight difference however is negligible in comparison to the
wide range of timing results for a given target area depending on subaperture size. These timing results
are so scattered because different subaperture sizes cause aperture zero-padding or Doppler subsampling in
the subaperture procesc'ng, lea-ling to different array sizes to be processed during the coherent subaperture
combining. Figure 3c shows the sum of the first two figures: The CPU time per target area for creating
all spectral subaperture images and combining them. Clearly, generating the lower resolution subaperture
images requires much more CPU time than combining them to a full resolution image. The influence of
combining the subaperture images on the total timing is negligible.

The following table shows the top ten timing results, the parameters used and the memory required
for each of the two stages.

Total CPU number of  Average memory Total memory
Time / Area Xo Yo nodes per subaperture for combination
(msec/m?) (m) (m) .. (M-Bytes) (M-Bytes)
0.599154 350 600 6 963 1127
0.671711 330 600 4 656 1141
0.722609 300 600 3 505 988
0.726007 350 . 450 3 471 839
0.727505 350 - 600 3 560 1147
0.732468 300 600 6 915 969
0.732560 350 450 4 622 - 838
0.748727 300 600 4 613 - 982
0.764735 300 450 3 431 706
0.774671 37y 450 6 955 909

Creating sub-aperture spectral images is complex, and low-level parallelization would be very difficult
to implement. Therefore we want to use high-level parallelization for this task, i.e. we want to run 16 of
these sequential processes at the same time, one on each processor. Since we are limited to 8 GB of RAM
on our given system. some of which is needed for the operating system, we do not want to use more than
an average of 300 MB of RAM for each process.

According to the table, Xo = 350m, Yy = 450m, and nodes = 3 yields the best timing result complying
with this memory limitation. Notice however that the performance could be over 17% better if our system
had enough memory to support the first solution. and even slightly better results could be achieved for larger
target areas if there were more memory available for each process. This performance would correspond
to the best performance we could expect if this part were optimally low-level parallelized, allowing one
process to use the entire available memory. ‘

The combination of the subaperture spectral images however is very straightforward, containing only
matrix additions and a 2D Fourier Transform. It is therefore easy to implement a low-level parallelization
for this task. We use all available processors and are therefore not limited to a fraction of the available
main memory.




D. Performance on a DMP-HCP

The implementation using high-level parallelism for the subaperture imaging does not make use of the
memory-sharing capability of the SMP-HPC other than in passing the results to the coherent subaperture
combining. This kind of independent parallel execution of the algorithm could just as easily be implemented
on a DMP-HPC. Notice that instead of examining the average memory usage, we have to consider the
maximum memory usage on a DMP-HPC.

The current DMP-HPCs used on radar carrying aircraft have only 64 MB of RAM per processor. This
limits the maximum memory that a process may use for subaperture imaging. From our tests, the best
results under these limitations are achieved using Xo = 50m, Y5 = 200m, and nodes = 1, yielding a total
CPU time per area of 0.003081sec/m2. This i> about 4.2 times less efficient than the implementation on
our SMP-HPC, therefore a DMP-HPC must have 4.2 times as many comparable processors in order to
process the data in the same time.

DMP-HPCs using 128 MB of RAM per processor could process a target area corresponding to Xo =
200m and Y, = 200m with one node per subaperture, yielding a total CPU time per area of 0.001851sec/m?.
This is 1.66 times more efficient than the implementation restricted to 64 MB of RAM. In the first scenario, -
the coherent subaperture combination requires only 48 MB, it could therefore run on a single processor.
In the second case, 188 MB of RAM are needed. However, the memory requirements for the coherent
subaperture combination do not restrict the processing parameters because the process and its memory
requirements can be distributed among several processors with some loss of efficiency. ’

Note that the most efficient choice of X, Yo, and nodes is not necessarily the fastest: If the set of
input data or the target area of interest is small, choosing the most efficient parameters will occupy only
a small number of processors. It would then be less efficient but faster to split the problem into smaller
pieces so that no processors will be idle. : N
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ABSTRACT

This paper address the problem of processing an X-band SAR database that was originally intended
for processing via a polar format imaging algorithm. In our approach, we use the approximation-free SAR
wavefront reconstruction. For “this, the measured and motion compensated phase history (polar format)
data are processed In a multi-dimensional digital signal processing algorithm that yields alias-free slow-time
samples. The resultant database is used for wavefront image formation. The X-band SAR system also
provides a two channel along-track monopulse database. The alias-free monopulse SAR data are used in a
coherent signal subspace algorithm for Ground Moving Target Indication (GMTI). Results are provided.

Keywords: Synthetc Aperture Radar. Wavefront Reconstruction, Monopulse SAR. GMTI

1. INTRODUCTION

* With the advent of powerful digital signal processing algorithms, both multidimensional signal analysis
and reconstruction in imaging systems may nowW be formulated via more concrete theoretical principles.
This is particularly true in SAR imaging. tr the pact decade, a new SAR imaging method, known as the
SAR wavefront reconstruction. has been introduced that provides high-resolution and accurate coherent
target information. Meanwhile. in the past thirty years an extensive theoretical and practica]‘knowledge
base has been shaped by the SAR polar format imaging that is based on approximations; some of these
concepts are either incorrect or not applicable when viewed in the framework of the modern high-resolution
SAR wavefront reconstruction.

A prominent example is encountered in X band spotlight SAR systems with a relatively large, e.g.,
30-degree look angle. Based on the polar format processing, it is sufficient to acquire about 30,000 slow-
time samples for this SAR system. However, based on the SAR wavefront reconstruction. the user should
acquire and process more than 150,000 slow-time and Jor cross-range samples for alias-free imaging. !
Yet, the current operational SAR systems that acquire data based on the assumptions of the polar format

The work of Mehrdad Soumekh was supported by the Office of Naval Research under grants N00014-
06-1-0586 and N00014-97-1-0966. and the Air Force Office Of Scientific Research under grants F49620-99-
1-0140 and F49620-93-C-0063.

! If one utilizes digitally-spotlighted coherent subaperture imaging [S00], the slow-time samples are not
required to be upsampled by a factor of five. However, the number of the cross-range samples for the full
resolution image still is about 150,000.




processing, provide a motion compensated phase history (MCPH) data that contains only 30.000 slow-time
samples.

In this case, the challenge for the user is to develop a method for converting the MCPH SAR data to
alias-free SAR data, and form high-resolution images from the resultant database via the SAR wavefront
reconstruction algorithm. “This paper is concerned with developing such an algorithm, and implementing
it for an operational spotlight SAR system. The application of the method in constructing a statistic that
can be used as a ground moving target indicator (GMTI) in a DPCA-based spotlight SAR system is shown.

2. WAVEFRONT RECOSNTRUCTION USING MCPH DATA
A. Conversion of MCPH Data into Phase History Data

Let s(w,u) be the measured spotlight SAR signal (phase history data) in the fast-time frequency w
domain and the synthetic aperture  domain. Suppose the spotlighted target area is identified via

z € [Xe~ Xo,Xc+Xo] and y€[Y.-Yo,Yc+ Yo,

where (X.,Y,) are the squint range and cross-range coordinates of the center of the target scene, and 2X,
and 2Y, are the size of the spotlighted area in the range and cross-range domains, respectively.

The MCPH SAR data are samples of the slow-time compressed SAR signal, that is,

se(w.u) = s(w,u) exp [j2k VXZ — (Yo — v)?].

Thus, the phase history.SAR data. that are samples of the SAR signal s(w, u), can be recovered from the
MCPH data via :

s(w,u) = se(w.u) exp [ — j2k /X2 — (Y. — u)?].

The main point that a user should keep in mind is that the slow-time sample spacing for the MCPH data
(polar format processing) is

-

Rc /\min
BT R
which is higher than the slow-time sample spacing of the SAR signal. Moreovr, due to the imperfections in
the analogly-spotlighted beam pattern (that is, the side lobes of the radar radiation pattern), there is some
leakage from the targets that fall outside the desired (spotlighted) target area (thatis, z € [X.— Xo, X+ Xo]
and y € [V, — Yy, Y, + Yo]); these would introduce further slow-time Doppler aliasing in the desired SAR
phase history data.

B. Digital Spotlighting and PRF Upsampling

Both of the above-mentioned slow-time Doppler aliasing-related problems can be surmounted via the
digital spotlighting and PRF upsampling in [S99]. For this purpose, suppose the length of the subaperture
is 2L; thatis, u € [ L, L], where u is the synthetic aperture domain. Let the coordinates of the center point
of the target area with respect to the center point of the synthetic aperture (that is, u = 0) be (X.,Y,).
- The user is interested in imaging an area in the spatial domain that is specified via z € [X,— Xo, X, + Xo)
and y € [Y, - Yo, Y, 4 Yp), with respect to the center of the aperture, that is, u = 0. Our task is to develop
a multi-dimensional digital signal processing method to eztract the SAR signature of the above-mentioned
target area from the spotlight/stripmap measurements, a process that we refer to as digital spotlighting.




This can be achieved via the following steps. The reference SAR signal is defined via

so(u,w) = exp[—j2k VX2 + (Ye —u)? + 52k R.]:

the addition of the phase term 2k R, to the reference signal ensures that the reference fast-time point T.
is unchanged. The digital spotlight filter in the (¢, k,) domain is defined via Wy(t,k,) = 1 for

|C—25 cos(d+8:)— Xo| < Xo and |°—25sin(¢+ 8.) - Y.| < Yo;
and zero, otherwise. Polar format processed reconstruction with the digital spotlight filter is
falt, k) = Wat k) Fu [ selw,u) |-
Then, the digital-spotlighted slow-time compressed SAR signal in the (w, k,) domain is obtained by

Sca(w, ky) = Fy [ fa(t, ky) ]

To upsample the SAR data in the synthetic aperture u domain (that is. sample spacing conversion
from A,. to A,), an appropriate number of zeros should be added to the samples of S 4(w.k,) in the
slow-time Doppler k, domain $99, Chapter 2]. The Nyquist sampling rate for the slow-time domain which
is the smallest of [S99]

A, < - Amin and A, < [ 2 sin @max _ 2 sin Bmin ]-
2 (sm 0max - 0min) /\min ’\max
where Apin and Apayx are, respect.ively, the smallest and largest wavelengths in the radar signal. and

- Y.-L-Y

Omin = arctan ( X, )
Omax = arctan (Zi_t)f_tz‘l) : - -

are the smallest and largest aspect angles of the target area (a positive Y, is assumed).

After the zero-padding in the k, domain, the digital-spotlighted slow-time compressed signal in the
(w,u) domain is formed via

sealww) = FEN [ Sealw, k) |.

Finally, the digital-spotlighted SAR signal in the (w, v) domain is constructed from the fol]owmg slow-time
decompression (mixing with the reference SAR signal):

sq(w,u) = scqg(w, u) sou,w).

C. Results

Figure la shows the polar format processed image using an X-band spotlight SAR database (called
DDB data); the imaged area is about 380 m in range by 380 m in cross-range, and the dynamic range used
to display the image is from -60 dB to -15 dB. Figure 1b is the imaged that is formed via the wavefront




reconstruction for approximately the same target area; the dynamic range used to display this image is also
from -60 dB to -15 dB. The polar format image in Figure la exhibits shifting and smearing degradations
at the edges of the 380 m by 380 m target area. In fact, the polar format processed image begins to
show shift and smearing degradations for cross-range values that are about 80 meters away from the scene
center. Note that for the same dynamic range of -60 dB to -15 dB, the polar format processed image
shows stronger background clutter. The reason for this is that the strongest reflector in the scene is at the
range/cross-range of (z,y) ~ (0, ~160) m that is smeared and shifted due to being relatively far from the
scene center.

it is interesting to note that the quality (resolution) of the polar format processed image at the center
of the target area [that is, (z, y) = (X..Y.)] is also worse than the resolution obtained via the wavefront
reconstruction algorithm in this region. (This should not have happened; the two methods should be
equally good in the center of the target area.) We believe that the polar format processor is implemented
with a filter that suppresses some of the streaking and smearing effects of the plane wave approximation
at the edges of the formed image. Unfortunately, this filter also worsens the resolution of (contaminates)
the polar format SAR image at the center of the target area.

Using the wavefront reconstruction processing for the X-band DDB data, we are able to form the
image in Figure 1c that is 500 m in range and 1200 m in cross-range; the dynamic range used to display
the image in Figure Ic is from -75 dB to -30 dB. We should mentioned that the target (spot) size of 1200
m in cross-range is beyond the arYticipa.ted 3 dB beamwidth of the radar antenna. In fact, the limiting
factor for our processing (in the cross-range domain) is the PRF of the radar system.

3. PROCESSING OF UNCALIBRATED MONOPULSE SAR IMAGES FOR GMTI

A. GMTI Using Along-Track Monopulse SAR

Along track monopulse SAR imaging system utilizes two radars for its data collection. One radar is
used as a transmitter as well as a monostatic receiver. The other radar is used only as a bistatic receiver.
In (3], we documented a signal processing algorithm of the two monostatic and bistatic databases of the
a")ng,'tra':k monopulse SAR system to obtain two coherently identical SAR images of the stationary targets
in_ the scene. While the stationary targets appear the same in the monostatic and bistatic SAR images,
howecver, the same is not true for moving targets.

This fact is the basis for developing a statistic, which we refer to as the difference image, for moving
target detection. If we denote the monostatic SAR image by f,.(z,y) and the bistatic image by fy(z,y),
the difference image for moving target detection is defined via the following:

fd(xe y) = fb(l',y) - fm(zay)'

The basic idea here is that the two sets of images that are formed in a monopulse SAR system, that is,
Sm(z,y) and fiy(z,y), have a slight slow-time difference. In this case, the difference of the two monopulse
images should yield information for GMTI (since the stationary targets do not vary in the slow-time).
However. due to miscalibration between the two radars of the monopulse SAR system, a better model to
relate the monopulse SAR images of a stationary target area is

fb(x-y) = fm(xay) * X h(‘tvy)a

where +x denotes two-dimensional convolution in the spatial domain, and A(z, ¥) is an unknown (miscal-
ibration) impulse response. Hence. one has to perform a blind calibration of the two images. A method




for this using a two-dimensional adaptive filtering and its implementation via a signal subspace processing
method are described in [S99, Chapter 8].

B. Signal Subspace Processing

Adaptive filtering methods have been suggested to solve the above problem in one-dimensional cases.
To apply these adaptive filtering methods in the two-dimensional problems, consider the discrete measured
data in the (z;,y;) domain. The impulse response h(z,y) is modeled by a finite two-dimensional discrete
filter hpn; the size of the filter, call it (N, Ny), is chosen by the user based on a priori information. In the
following discussion, we choose both N; and N, to be odd integers, and (nz,ny) = (N;/2-.5,Ny/2-.5).
Then, the above continuous model is rewritten in the following discrete form '

fb(Ii,yj)= 2‘: Z hmn fm(zi_mAr,yj‘nAy)'*'fe(xieyj),

m=—n; n=-n,

where (A, A,) represent the sensor sample spacing in the (z,y) domain. In the adaptive filtering approach,
a solution for the impulse response hp,, from the knowledge of fm(zi,y;) and fy(z;,y;), call it Bonn, is
obtained via minimizing the error function

ZZ ‘fb(znyj)" Z Z hmn fm(z: mAz,yJ nA )! .

m=-n, n=—n,

The resultant solution is used to estimate fy(zi,¥y;) via

fb(znyj)- Z Z hmn fm(zt mA:r:’yJ nAy)

m=-n;, n=-n,

The statistic used for detecting the foregin object is constructed from the following:
 fa(zi,y5) = fo(ziys) = folxivs)-

In the one-dimensional problems, the solution for h,, is formed via computing the inverse of a large
covariance matrix, a recursive LMS (gradient descent adaptive) algorithm. These methods may be utilized
in the two-dimensional problems via, e.g., reshaping the two-dimensional arrays into one-dimensional arrays.
This, however, requires processing very large matrices, especially for the covariance matrix and the reshaped
discrete filter.

The signal folzs, y;) is the projection of fy(z,y;) into the linear subspace which is defined by fn(z;,y;)
and N — 1, where N = N N,, of its shifted versions; ie., ¥ = [ fm(zi — mAL y; — nAy); m =
—Tgyeey Nz, T="—Ty,. .., Ny ] Thus, it is sufficient to identify the signal subspace ¥. and then obtain the
projection of fy(z:,y;) into this signal subspace to construct fb(-’vi,yj). Let ¥e(zi,y;). £ =1,2,...,N, be
a set of orthogonal basis functions which spans the linear signal subspace of ¥; i.e., ¥ = [ ’(ﬁg(z,,y_-,) (=

LN ], where

{1, for £ = k;

0, otherwise.

<V >= D) (i, Y0k, ;)
N :




To generate this signal subspace, one ‘can use Gram-Schmidt, modified Gram-Schmidt.-llousoholdor or
Givens orthogonalization procedure. The size of the signal subspace, i.e., N, depends on the user’s a priori
knowledge of the number of the nonzero coefficients in the discrete model of the impulse response h(z.y).
For instance, if the discrete h(z,y) contains (N, N,) non-zero pixels; then we should select N = NN,
In practice, the exact value of NN, is not known. In this case, an estimate should be used based on the
maximum anticipated degree of shift and calibration errors between the two sensors.

The projection of the fy(z;,y;) into the basis function %¢(z:,y;), which is identified by the series
coefficient a; (£ = 1,2,...,N), is found via the following:

ag =< fp, ¢¢ >= ZZ fo(ziry5) Y7 (i, ¥;5)
oy i

The projection of fy(z;,y;) into the signal subspace ¥ is

N

Folzisy;) = Z ae Ye(zi, y;)-

=1

The signal subspace difference image, i.e., the statistic for detecting the foreign object is constructed
via (6b) fd(xi,yj) = fi(zi,yj) —‘fb(.r,‘,yj). Note that both the adaptive filtering method and the signal
subspace projection of seek the same minimum error energy solution for the estimate of fy(zi,y;) in the
linear subspace of f,(z;,y;) and its shifted versions.

C. Results

We now examine the GMTI results that are obtained using a DPCA (two antenna) database for the
X band spotlight SAR system of Figure 1. Figure 2a shows the SAR reconstruction of a broadside target
aréa that was obtained with the Channel 1 SAR data of the DPCA system. The Channel 2 reconstruction
resembles the image in Figure 2a (not shown here). However, the coherent or noncoherent (magnitude)
difference of the images of Channels 1 and 2 would not result in nulling of the stationary targets (not
shown here). Figure 2b shows the block-base . sigr-u subspace difference image; for this, we use 20 pixels
by 20 pixels blocks (approximately 5 m by & :“‘;,Tatzl a filter size of 5 pixels by 5 pixels. The vertical streaks
in Figure 2b represent the signature of the moving targets. Note that some of these streaks (i.e., moving
target signatures) are not visible in the original SAR reconstruction of Figure 2a.

Figure 3a shows the SAR reconstruction of an off-broadside target area that was obtained with the
Channel 1 SAR data of the DPCA system: the target area is composed of a foliage region with moving
targets in its surroundings. The Channel 2 reconstruction resembles the image in Figure 3a (not shown
here). The coherent or noncoherent (magnitude) difference of the images of Channels 1 and 2 would not
result in nulling of the foliage (not shown here). Figure 3b shows the block-based signal subspace difference
image. The vertical streaks in Figure 3b represent the signature of the moving targets. Similar results for
another target area that contains both stationary and moving targets are shown in Figures 4a-b.
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ABSTRACT

This paper is concerned with a representation of a target’s complex Synthetic Aperture Radar signature
that could be used for classification purposes. In this representation, the complex SAR signature of a desired
target area (chip) as a function of the radar frequency and aspect angle (w, @) (i.e., the target area phase
history data) are shown to directly map into the two-dimensional spectrum of the target’s image via a
nonlinear transformation; the same information base in the (w, ¢) domain is shown to be retrievable from
the digitally-spotlighted complex SAR signature of the desired target region. For the classification problem
(Automatic Target Recognition), the resultant complex SAR signature in the (w.o) domain is compared
with a finite and discrete set of reference complex SAR signatures via a process that we refer to as signal
subspace matched filtering.”

Keywords: Synthetc Aperture Radar, Automatic Target Recognition, Signal Subspace Matched Filtering

1. INTRODUCTION

This paper presents a new framework for Automatic Target Recognition (ATR) in Synthetic Aperture
Radar (SAR) that is based on classification of the phase history data of individual targets. In tie conven-
tional SAR-ATR algorithms, the magnitude only or the complex SAR image of a target chip is analyzed
to determine the target class. Depending on the relative coordinates of a target in the imaging scene and
the flight path of the radar-carrying aircraft, the SAR image (chip) of a target possesses a spatial warping
that should be incorporated and/or compensated for in the SAR image formation and the ATR algorithm.
Furthermore, the formed SAR images exhibit certain (slant plane) parametric variations and even aliasing
errors and erroneous shifts that depend on the type of the SAR imaging algorithm used and the individual
who developed it.

For the success of a SAR-ATR algorithm, the spatial warping and slant plane parameters of the SAR
imaging ‘algorithm should be available to the user. However, often some or all of the above variations
and parameters of the formed SAR image are unknown to the SAR-ATR user. These ambiguities, in
conjunction with possible aliasing and erroneous shifts in the formed image, result in unknown geometric

The work of Mehrdad Soumekh was supported by the Office of Naval Research under grants N00014-
96-1-0586 and N00014-97-1-0966, and the Air Force Office Of Scientific Research under grants F49620-99-
1-0140 and F49620-93-C-0063.




distortions and errors in the reconstructed SAR image that have adverse effects on the performance of the

SAR-ATR algorithms.

In this presentation,' we provide a two-stage SAR-ATR algorithm that is not sensitive to the above-
mentioned problems. In the proposed approach, the SAR-ATR user applies a relatively fast CFAR detection
algorithm with a high probability of false alarm as well as a high probability of detection to identify the
coordinates of suspected targets in 2 SAR imaging scene. Next, the coordinates (not the entire chip) of
cach suspected target is passed to what we refer to as the digital-spotlighting algorithm that extracts the
S AR phase history data of a neighborhood within the input coordinates. We will also show that the SAR
phase history data may also be formed by the inverse two-dimensional Fourier transform of the desired
complex chip that is followed by a nonlinear mapping of the two-dimensional spatial frequency domain.

The resultant database is the complex SAR signature (phase history) of the chip area at the desired
coordinates that carries information on the variations of the target’s complex radar signature with respect
to the fast-time (radar) frequency and aspect angle. This database could be passed through 2 finite
order parametric modeling algorithm. The output of this algorithm is compared with a set of pre-existing
parametric models (for tanks, trucks, foliage, clutter, etc.) to identify the class of the target at the input
coordinates where the original ATR algorithm detected a suspected target.

A special algorithm for the above-mentioned modeling and matching is introduced, an algorithm that
we call signal subspace matched filtering. that possesses the following desirable features: '

i. The signal subspace matching algorithm is not sensitive to the calibration errors of the SAR system
(i.e.. variations of the radar radiation pattern from one experiment 10 another). Such calibration
errors. that could drastically alter the phase information of a target’s SAR signature. are one of the
major obstacles in exploiting the complez SAR signature of a target in the classification problems.

ii. The pre-existing or reference targets’ SAR signatures are commonly measured or generated (e.g.; via
- the X-patch algorithm) at a finite and discrete set of fast-time (radar) frequencies and aspect angles.
i.e.. (w,0). In this case, the measured (extracted) SAR signature of a test target in the (w, @) domain
may not correspond to the available discrete reference targets’ SAR signatures: in this case, the test
and its corresponding reference SAR signatures would not show ideal registration. The proposed signal

subspace matching algorithm is not sensitive to this type of misregistration.

Our analysis begins with the characterization of a target SAR signature as a function of the radar
frequency and aspect angle (Section 2). This is followed by identification of this signature in the two-
dimensional spectral domain of the formed target image (Section 3). Finally, the signal subspace matched
filtering method is outlined in Section 4.

2. TRANSMIT-RECEIVE MODE RADAR-TARGET RADIATION
PATTERN AND ATR USING DIGITALLY-SPOTLIGHTED
PHASE HISTORY DATA

The type as well as shape of a target determines its interaction with the radar illumination. For
instance, the characteristics of the SAR signature of a man-made metallic cylinder is quite different from
those of a tree with the same size. This difference is a key feature which can be used to discriminate a
man-made structure from foliage.

Why not use shape information to distinguish targets in SAR images? Due to the radar wave resonance
in cavities, surface waves, and the like. for metallic targets, the SAR image of these targets does not resemble




their optical image. Thus, shape (magnitude) information in a SAR image might not be a reliable source
for target detection and identification. However, a target coherent SAR radiation pattern or coherent SAR
image contains distinct features which could be used for target detection and identification.

We now present a study to quantify the coherent SAR signature of targets. A target exhibits an
amplitude pattern, which contains phase as well as magnitude, when illuminated by a radar system such
as SAR. A target amplitude pattern varies with the radar fast-time frequency and aspect angle. For a
radar located at {{,u) and a target located at (Zn,Yn). We denote the target amplitude pattern with
@n(w.Tn, Yn — u). Note that

arctan ( y"z_ %)
n

is the target aspect angle with respect to the radar broadside.

The coherent SAR signature of the n-th target is its contribution in the total echoed signal from the
target scene. When the radar is located at (0.u) and fast-time frequency w, the coherent SAR signature of
the n-th target, that is, the transmit-receive mode radar-target radiation pattern or SAR radiation pattern
for the n-th target can be expressed via the following:

hn(: Ty Y — 4} = hT(@,Tny Yn = 8) @nl0: Ty Y — ) hp(w, Tn: yn = U);

N—

Radar—to—Target Ta:get Target -;;—Radar
in the above model. h7(-) is the radar transmit mode radiation pattern, hg(-) is the radar receive mode
radiation pattern [S99].

_Substituting for k7(-) and hg(-) in terms of their amplitude patterns and spherical PM signal in the
n-th target SAR radiation pattern, we obtain

hp(w,Tn, Un — ¢) = a7(W,Tn: Yn — u) exp[—jk\/:r:'f1 + (yn — u)? ]
- X p(&.Tn,Yn — U)
: X @R(e:ZnUn — u) exp[—jkv/zh +(yn — v)* |

A block diagram representation of the generation of the SAR radiation pattern for the n-th target is shown
in Figure 1.

Using the expression for the radar transmit-receive mode radiation pattern
h(w‘ z, y) = hT(W‘! Z, y) hR(wv I, y)
= a(w.1,y) exp(—j2kv/z? +9?)

where
a(w,z,y) = ar(w,z,y) ar(w,2,¥).

in the SAR radiation pattern of the n-th target. one obtains

ho(WsZTnyYn — u) == an(wv TnyYn — u) h(waxnv Yn — u)

= ?‘n(wvznw Yn — U‘) G(U,In, Yn —l) exp [_]2k .'L'i + (yﬂ - U)2 ]

Amplitude Pattern Spherical PM Signal

We showed earlier that the radar amplitude pattern a(w, Tn,Yn — u) is related to the physical size and
to the type of the radar used. The magnitude of the radar amplitude pattern |a(w, Tpn-yn — u)| dictates




its power at the coordinates of the n-th target at the fast-time frequency w. The spherical PM signal
exp [—j2k\/m is the round trip phase delay of the echo from the n-th target at the fast-time
frequency w.

Once a target area (chip) is identified by a CFAR algorithm as a potential man-made target, the user
could extract the target amplitude pattern a,(-) via the digital spotlight algorithm [S99, Chapters 5-6]; the
size and location of the digitally-spotlighted area are dictated by the coordinates and the size of the chip.
This approach is summarized in Figure 2. '

3. REPRESENTATION IN SLOW-TIME ANGULAR DOPPLER DOMAIN
AND SPECTRAT. DOMAIN-BASED ATR

Based on the properties of AM-PM signals [S99, Chapter 2], we have the following slow-time Fourier
transform for the transmit-receive mode radar-target radiation pattern:

f(u) h‘n(we Tny Yn — u)]
= A(w, ku) An(kau) €xp ( -J 4k? — ki In "jku yn)a
where the target and radar amplitude patterns in the v and k, domains are related via the following:

.4'1,1(1.;:,':1:,,,3/,1 — ) = Ay [2ksin 6n(u),w]
a(w, Ty, Yp — u) = A[Qk sin 0n(u),w],

and

0n(u) = arctan( Yn — u)
'n
is the n-th target aspect angle when the radar is located at (0, u).

o Reminder: The amplitude-functions a(-) [or an(-)] and A(-) for A,(-)] are scaled transformations of
each other, and not Fourier transform pairs.

The angular slow-time Doppler domain {599] ‘s defined via

o= arcsm(EE),

or
k, = 2k sin ¢.

Recall that the slow-time domain AM signal a,(w,z,, y, —u) and the slow-time Doppler domain AM signal
Ap(w.k,) are related via the following scale transformation:

1 .
Ap(w,ky) = 7 An(w. Tn, Yn — ),

where the mapping is defined via
ky = 2k sinf,(u).

Thus, the scale mapping of the AM signals in the angular slow-time Doppler domain is

¢ = 0,(u).




The above indicates that the AM signature of a target in the aspect angle 6,(u) domain, that is. an().
directly maps into the slow-time angular ¢ domain to form the AM cg_mponent of Sp(w,ky).

This phenomenon is demonstrated in Figure 3a-b. Figure 3a shows the aspect angles of the n-th target
atu=—-L,u=0,u=1L, and the Closest Point of Approach (CPAYu=yn which are, respectively, 0n(—L)-
6,.(0), 8,(L), and 8,(yn) = 0. Figure 3b shows the slow-time Doppler mapping of the AM component in
the slow-time angular Doppler ¢ domain. For this purpose, the slow-time angular Doppler ¢ domain is
shown as the polar angle domain of

kp = /4k* — K2
ky = ky
or
ky = 2k cos¢
k, =2k sin ¢

which are the range spatial frequency and cross-range spatial frequency domains. respectively; the above
is called the SAR spatial frequency mapping [S99].

Next, we use the slow-timé angular Doppler variable ¢ to redefine the slow-time Fourier transform of
the AM-PM signal, that is, '

Sp(w.ky) = An(w.ky). exp (- jVAaKk? — k% Tn — Jku Yn)-
via ,
S.(w.2k sino) = An(w.2k sino) exp (- j2k cos¢ z, — j2k sino yr)-

Also, we define the AM signal of the n-th target in the slow-time angular Doppler domain by
Apn('-"-, @)= An(ws2k sin ¢).
Thus. we may rewrite the AM-PM signal in the angular slow-tirﬁé Dorrier domain by

Sn(w,2k sin ¢) = -’1pn(w7 @) exp ( — jkz Tn — Jky yn)-

The equivalence of the aspect angle 6,(u) domain and the slow-time angular Doppler ¢ domain in the
mapping of the AM signature of a target plays a key role in characterizing the target SAR image; this is
crucial for target recognition or detection in SAR images. For this, suppose a CFAR algorithm identifies a
target chip, call it fo(z,y),as a potential man-made structure. The user could form its two-dimensional
spectral image Fn(kz. ky) via 2 two-dimensional (discrete) Fourier transform. Finally. the target complex
amplitude pattern is obtained via mapping Fn(kz, k,) from the (kz,ky) domain into w. 6) domain via the
following nonlinear two-dimensional transformation (SAR inverse mapping):

¢=§J@+@

@ = arctan (%)
-

The resultant database if then used for classification; this procedure is outlined in Figure 4.




4. SIGNAL SUBSPACE MATCHED FILTERING

Next, we consider the problem of registration of the reference and test SAR signatures of a target. In
practice, the user faces subtle phase and gain variations in the two complezr SAR signatures. These subtle
variations are due to the changes of the point spread function for the two SAR systems, and incremental
changes in the relative orientation of the target with respect to the radar (small shift, scaling and rotation).
These factors are outlined in the following. '

i. The flight path and altitude of the radar-carrying aircraft may vary slightly in the reference run (or
the simulated X-patch run) and the test run. This causes a relative scaling and rotation cf argets in

the two SAR signatures.
ii. The two radars exhibit calibration errors. This is discussed and modeled in [S99. Section 8.2].

iii. The two SAR data contain different residual motion errors (even after motion compensation). This
results in a fast-time frequency and slow-time (aspect angle) dependent phase error.

iv. In the case of a simulated reference target signature (e.g., X-patch data), the reference target SAR
signature is generated at a finite and discrete set of radar frequencies and aspect angles that may not
correspond to the imeasured SAR signature of a test target. :

\We denote the (discrete) reference target signature by Apn1(w.9) and the (discrete) test target signa-
ture by Apn2(w,®). (Note that a si_mulated reference signature Apni is commonly available or generated
for all aspect angle ¢[—7,7): however. the test target signature Apn2 might be measured only within
a few degrees of aspect angle.) Due to the above-mentioned calibration and misregistration errors. the
two-dimensional matched-filtering (or correlation) of these two signatures, 1.e.,

< Apn2(w.0) . Apn1(w, @) >,

would not result in ther ideal correlation results. However, the calibration and misregistration errors could
be circumvented by the signal subspace projection of Apn2(w,@) into Apni(w, @) [S99 ection 8.3]; this
operation can be viewed as a two-dimensional blind equalization or adaptive filtering. '

Let Apnz(w, ®) be the resultant subspace projection. The signal subspace matched filtering is defined
to be the correlation of this subspace projection and the reference target signature; ie..

< Apn?(weo) ) Apnl(wa‘.b) > .
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